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Abstract. Based on an improved semi-empirical effective Hamiltonian method, computed 
electronic structures of clusters and linear chain crystals are reported. The ionization energies 
of clusters as a function of cluster size are examined to find correlation with bulk values as 
the cluster size further increases. The improved method is shown to remedy some failures 
of conventional semi-empirical methods. Some of the salient features from the present study 
are the improvement of the first ionization energies, the satisfactory prediction of work 
function, a newly found linear relationship between the ionization energies and the inverse 
of cluster size, l /n ,  for the molecular clusters of (HzO),,.  In addition. predicted band 
structures for one-dimensional organic crystals and ice are discussed. 

1. Introduction 

For self-consistent field HF (Hartree-Fock) LCAO (linear combination of atomic orbitals) 
calculations for crystals, various levels of direct [l-161 and reciprocal [17, 181 lattice 
vector space approaches have been employed. Others include the Xa scattering wave 
[19], ab initio extended muffin-tin orbital [20], and localized orbital methods [21] to 
name a few. In order to avoid excessive computational time, semi-empirical valence- 
electron methods [8-16, 21-25] are often employed. Among the semi-empirical 
methods, MNDDO [25] (modified NDDO [23]--(neglect of diatomic differential overlap) 
is one of the most recently developed methods, and has rapidly become one of the most 
widely used methods. Recently, its application to clusters, crystals, and surfaces has 
greatly increased [ 15,16,26-34]. 

In this study, we present both the formal description of a semi-empirical effective 
Hamiltonian treatment and its application to clusters and crystals. The clusters referred 
to here are the aggregated states of either atoms or molecules. The physical properties 
of the clusters are then expected to be intermediate between the atomic (or molecular) 
and bulk properties. When the number of atomic or molecular units in the clusters is 
sufficiently large, some physical properties of the clusters are expected to converge to 
the bulk limits of crystals. Thus it will be of great interest to examine the variation of 
* Present address: Department of Physics, Kyung-Sang National University, Chinju, Korea. 

0953-8984/90/509989 + 13 $03.50 @ 1990 IOP Publishing Ltd 9989 



9990 Sung-Ho Suck Salk et a1 

physical properties as a function of cluster size in order to see how they converge to some 
of the bulk properties. Our improved method of treating molecular clusters and crystals 
will be shown to remedy the failure of semi-empirical theories in accounting for inter- 
molecular binding. Variation of the first ionization energy as a function of cluster size 
will be examined in order to see the trend of its convergence to the bulk limit of linear 
crystals. Geometry optimization is often ignored in the study of clusters and crystals. In 
the present study, we would like to stress that the reported results for both the clusters 
and crystals are based on geometry optimization. 

2. Electronic structure study of molecular clusters and infinite linear chain (ID) crystals 

Parameters in the conventional semi-empirical methods [ 11 are selected by fitting physi- 
cal properties for isolated molecules (monomers), based on geometries wherein their 
equilibrium interatomic distances are much shorter compared to intermolecular sep- 
arations between molecular units in molecular clusters or molecular crystals. For this 
reason semi-empirical methods are likely to fail in reproducing observed properties, 
particularly for the molecular clusters or crystals whose formation is primarily due 
to intermolecular interaction. Indeed, earlier we found that the conventional semi- 
empirical methods are reliable only for the isolated molecules, not for the molecular 
clusters [35], thus requiring a correct account of the long-range intermolecular inter- 
action. For this reason, in our semi-empirical effective Hamiltonian treatment we divide 
parameters into two sets: one for the intramolecular interaction and the other for the 
intermolecular interaction in accordance with the expressions (46) to (48) (see later). 

In addition to the separation of the intramolecular and intermolecular interactions in 
treating the semi-empirical effective Hamiltonian, we introduce the core-core repulsion 
energy which is differently treated from the original MNDDO [25] due to the successful 
two-parameter set effective Hamiltonian approach that we proposed elsewhere [29,35]. 
It is written, in accordance with our earlier work [29,35] 

for the pairs of atoms a and b. Here Tab is the interatomic distance between a and b; y 
and LY are the parameters to be chosen by fitting measurements; Z, and Z b  are the core 
charges of atoms a and b respectively. (s,s,/sbsb) above is the two-electron two-centre 
integrals involving the s atomic orbitals in the two different atoms a and b. In our 
calculations these two-centre integrals are taken from the original MNDDO parameter 
values. In parallel with our earlier study of molecular clusters, in the following we 
introduce an effective Hamiltonian method for molecular clusters. 

E a b  ZdZb(SaSaISbSb) [l + Yab exp(-a~brabl 

The valence-electron Hamiltonian for molecular crystals is, in atomic units, 
( 2 N + l ) '  ' 1 ,  (2N+1)3  "e 

H =  E E h h , @ )  + E E V,(P,q). (1) 
P m  P24 a<B 

Here the first term is the one-electron energy operator made up of the kinetic energy 
and nuclear attraction energy terms respectively: 

( 2 ~ + 1 ) 3  n d  

h,@) = -;v; - E 2 Z,l$ - ztz1-l (2) 

V,p(P,4)  = le - q-'. 
and the second term is the two-electron repulsion energy operator: 

The symbol definitions in (1) to (3) are as follows: p and q are the vector indices (integers) 
(3) 
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to locate unit cells with each component ofp and q running over integers - N ,  - ( N  - l), 
. . . , 0 ,  . . . , ( N  - l), N; (Y and p, the electron indices; ne, the total number of valence 
electrons in the unit cell; rP,, the position vector of electron (Y in the unit cellp; Z,, the 
core charge (nuclear charge-inner shell electron charge) number; R i ,  the position 
vector of atom a in the unit cell q ;  and na, the number of atoms in the unit cell. (Y < p in 
(1) represents a single counting of interaction between any two electrons. 

Introducing the average (Hartree-Fock) potential, U:, Hamiltonian (1) is cast into 

H =  H" + H' (4) 

where H" is the Hartree-Fock one-electron Hamiltonian: 

and HI,  the residual interaction: 

We now rewrite (6) in the form of pair-wise residual interaction U,: 

H' = x E U,@, q) 
P.9 a<, 

where 

with 

M = ne(2N + 
We can rewrite ( 5 )  and (6) in the form of second quantization: 

and 

- x ( i t  lP)a, @) +a,  (q )  (11) 
P . Q  11 

where i ,  j ,  k ,  and 1 are the spin orbital indices and lip), the crystal orbital belonging to 
the pth irreducible representation. 

The crystal orbitals i are written, in terms of the LCAO expansion, 
n 

W ( r )  = x qL,@)q$W. (12) 
P 

Here p runs over all the atomic orbitals in the unit cell. C,, is the expansion coefficient 
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which 'weighs' the contribution of the atomic orbital y to the ith crystal orbital. The 
atomic Bloch functions are written by 

where R4 is the position vector of an atom belonging to the unit cell q and q,,, the yth 
atomic orbital. 

A set of infinite orthonormal electronic configuration states (determinants) can be 
constructed from the crystal orbitals defined above. Using the orthonormal set, we 
define the projection operator [36] 

p = /O)(OI (14) 

4 = IkHkI (15) 

P + Q = l  (16) 

P Q  = Q P =  0. (17) 

H Y = E Y  (18) 

which projects onto the vacuum state IO), i.e. the Hartree-Fock ground state, and 

which projects onto the excited configuration states (determinants) lk). They satisfy 

and 

Using the relations (14) to (17) for the Schrodinger equation 

we obtain the coupled Schrodinger equations of 

i 'H(P + Q)Y = E P Y  

and 

Q H ( P  + Q)Y = E Q Y .  

The substitution of (20) into (19) leads to 

HPP 10) = EIO) 

where 

HPP = P ( H  + H Q ( E  - Q H Q ) - ' Q H ) P .  

Realizing that PHQ = P H ' Q  and Q H P  = Q H ' P ,  the expression (22) above is re- 
duced to 

H,, = PHP (23) 
where 

H = H + H '  

with 

H' = H ' Q ( E  - Q H Q ) - ' Q H '  

or 

H' = H ' Q ( E  - Q H " Q ) - ' Q H '  



Electronic structures of molecular clusters and crystals 9993 

+ H ' Q ( E  - Q H " Q ) - ' H ' ( E  - Q H " Q ) - * Q H '  + . . .. (26) 

E = ( O l H / O )  = E" + E' (27) 

E" = (OIHIO) (28) 

E' = ( O I H ' l O )  (29) 

The true total electronic energy is then simply 

where 

is the familiar Hartree-Fock energy, and 

is the correlation energy, which is formally written, by using (lo),  (11), and (26): 

E' = (ipjql V ,  1 , ~ ~ s )  (/crlsl v,, 1 ipjq) 
p.4.r.s  i . j .k.1 

(OIai(P>+a,(4) +a/(s)a,(r> ( E  - Q H " Q )  - 'ak(r>+a,(s) +a, (4)a,(p)  IO) 
+ (ipjq I V,, I krP) ( krP 1 V f f P  I ipjq) 

- C ( i P I ~ ~ l k r ) ( / c r / ~ : ~ i P )  

x (Ola,(p)+a,(r)(E - QH"Q)- 'a , ( r )+a i (p ) l0 )  + . . .. 

X (Olai(P)+aj(q) ' a k ( r ) a / ( s )  ( E  - Q H " Q )  -' ak(r)+a/(S)+a,  (4)ai (P)IO) 

p . r  i .k  

(30) 
In the expression above the crossed term between the direct and exchange interaction 
and higher order terms are omitted. 

Obviously direct evaluation of the correlation energy (30) above is not readily 
feasible and will be circumvented here. The introduction of (7) into (26) yields 

fi' = c 2 W,,(P, 4) (31) 
P . 9  f f < P  

where 

W,P(P, 4) = uNpp<,(E - QH"Q1-I 

x (e 2 Uy,h ,  + uA,p , , (E  - QH"Q1-l 2 + . . . ) .  

(32)  
r . s  y r < b S  1.11 % , < U , ,  1 l .W :', < b , ,  

Later two-electron integrals associated with WffP will be subject to a semi-empirical 
treatment. 

Using (1) and (31) above, we now rewrite (24): 

fi = c 2 h,b) + c e [Vff,(P, 4) + W,(P? 411. (33) 
P . 9  a<P 

Applying the usual procedure of the variational method to the total electronic energy 
(27), 

P f f  P . 9  

we obtain the one-electron Schrodinger equation of the form 

X ( P )  I ip) = E i  ( P )  1 ip).  (35 )  
Here X ( p )  represents the effective one-electron Hamiltonian: 

m 

W P )  = W P )  + C [2Jl(P) - K,(P)I (36) 
I 
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where 

and 

('p lip) = Y's(rp). (39) 

For simplicity the electron index LY is dropped in (36) above. It is now easily seen that if 
electron correlation is ignored (that is, Wap = 0), the effective one-electron Hamiltonian 
(36) above is reduced to the familiar form of the Hartree-Fock Hamiltonian. 

To treat infinite linear chain molecular crystals, the block diagonalized matrix of the 
effective one-electron Hamiltonian becomes 

r 

X p u ( k )  = [exp(ikqa)Xpouy + exp(-ikqa)Xuopq](l - BS,,). (40) 

Here Xpouq  are the matrix elements of X ( q )  between the atomic orbitals, ,U' belonging 
to the reference unit cell o and vq belonging to the unit cell q and are explicitly 

q = o  

qPw = j V p 4 ' m ) ~ ( ' a ) V u 4 ( ' w )  d'a 

+ c, c D A T U '  (j u?$4'a>u??s('p)(V,p + W,,) 

X u ? u & n ) V o 4 $  d', drp - d j V;: . ( 'g)VN$(Vap + W,,) 

3.r  ho 

(41) 

with 

where Dhsor is the charge density matrix element for one-dimensional crystals. ,U, v ,  A, 
and a i n  (41) are the atomicorbitalindices. q , s ,  andtare the cellindices. ais theprimitive 
translation for the linear chain crystals. 

Now writing 

the expression (41) is simply 

Here the first term is the familiar one-electron integral and the second term includes 
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correlation through the two-electron integrals due to the residual interaction Wup. The 
two-electron integrals r are determined by parametrization. 

The expression (45) above represents the matrix elements of a generalized effective 
(semi-empirical) Hamiltonian X .  Here the effects of correlation are now seen to be 
introduced only through the two-electron integrals r. We choose the NDDO (neglect of 
diatomic differential overlap) approximation [23]  for the evaluation of the two-electron 
multi-centre integrals r. Further we divide the matrix elements ' X g t V g  into two sets, 
intramolecular and intermolecular matrix elements. Thus we obtain, for the intra- 
molecular matrix elements, 

which represents the matrix element between the atomic orbitals p:  and U: both belong- 
ing to the same atom a in the same cell 0, and 

which represents the matrix element between an atomic orbital p i  belonging to an atom 
a and an orbital vC: belong to a different atom b in the same cell 0. Now for the 
intermolecular matrix elements we obtain 

representing the matrix elements between an atomic orbital p i  belonging to an atom a 
in the cell o and an orbital v x  belonging to a different atom b in cell q. 

For the sake of connection with the kth block diagonalized matrix for the effective 
one-electron Hamiltonian for one-dimensional crystals, we now write [ 11 

x 

X ( k )  = exp(ik R , ) X ( q )  
q = - r  

(49) 

with the matrix size of n x n ,  where n is the total number of atomic orbitals available in 
the unit cell. Here the matrix element of X ( q )  is given by 

xgOuq = ( p o i x i v 9 )  (50) 
with po indicating the atomic orbital p belonging to the reference unit cell o and v4, the 
atomic orbital v in the unit cell q. k is the wavevector whose ith component is given by 

kl = 2W/b I (2N + 1)1 

R ,  = 414, + 4242 + 4 3 4 3  

(51) 

(52 )  

with the range of -n/q < k, < n /u ,  and the direct lattice vector, 

where 4, are the basis vectors of the crystal. 
The matrix elements (1) are explicitly 
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where D is the charge density matrix: 

(54) 
2 ”  DASat  = n: IQ CTS,(k)C,t,(k) exp[ik - (R,  - R , ) ]  dk. 

Here 5;2 is the volume of the first Brillouin zone and C ( k ) ,  the expansion coefficient 
vector. The crystal orbital energy or the energy band ~ ( k )  is obtained from [ l ]  

X ( k ) C ( k )  = &(k)S(k)C(k) .  (55) 
S(k)  is the kth block of the block diagonalized matrix for the overlap integral. 

crystals, to 
Now the consideration of translational symmetry in (53) leads, for one-dimensional 

xuo”-q = Xp,q. (56) 

X ( k ) +  = X ( k ) .  (57) 

The matrix X ( k )  in (49) satisfies the hermiticity 

Thus the matrix element of the effective one-electron Hamiltonian (49) can be rewritten: 
z 

xPV(k) = 2 (elk.RqxPo,q + e-lk,RqXe,ovq>(l - iso9>. (58) 
9=0  

For comparison, we present two different treatments for the semi-empirical effective 
Hamiltonian matrix. One is the separation of the matrix into the intramolecular and 
intermolecular interactions as shown in (46) through (48) and the other treatment is no 
separation between the two. The latter is thus a single intramolecular parameter set 
approach equivalent to the conventional semi-empirical method known as MNDDO [25]. 
Weconsiderthe latterfirst, forstudyingboth the finite andinfinite ‘clusters’ofH(CH2),H 
and (CH,), respectively. They are namely the n-alkane molecules and the infinite linear 
chain polyethylene crystal. Here n is the number of CH2 units in n alkanes. In our present 
work all of the calculated results for the organic crystals and polyatomic cluster systems 
of interest are based on geometry optimization. 

It is of note that among the computed n-alkanes listed in table 1, only the two 
molecules of CH4 and C2H, were used in the original parameterization [25]. Thus it is 
of great interest to see how well both the first ionization energies of the remaining large 
organic ‘clusters’, i.e. n-alkanes, H(CH2),H with n > 2 and the electronic structure of 
the infinite linear chain organic crystal of polyethylene agree with observations. The 
predicted ionization energies for all the n-alkane molecules and polyethylene are con- 
sistently in better agreement with the observed values [37] compared to ab initio HF [6], 
as shown in figure l(a). The ab initio HF (in which electron correlation is absent) predicted 
the increasing divergence of ionization energy from observation as the cluster size 
n increases. This suggests that the role of electron correlation becomes increasingly 
important as n increases. The measurements of photoelectron spectra [37] show a 
systematic decrease in the values of ionization potentials with the increase of size n and 
the propensity of a linear relationship between the ionization energy and the inverse of 
molecular or cluster size, l /n .  Encouragingly, such a linear relationship is correctly 
predicted with the one-parameter set semi-empirical effective Hamiltonian MNDDO 
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Table 1. First ionization energies (eV) of n-alkanes and polyethylene. 

PES [36] Ab inirio [6] MNDDO [ 151 
Molecule ( e v )  ( e v )  ( e v )  

14.0 
12.1 
11.5 
10.67 
10.37 
10.18 
9.90 

- 

9.0 

16.3 
14.7 
14.3 
13.9 

- 
13.2 

13.9 
12.7 
12.3 
12.2 
12.2 
12.0 
12.0 
11.9 
11.9 
11.8 
11.4 

> 
al - 1 7 t  t 

1 5  

13 

1 1  

9 
0 . 0  0 . 5  1 . o  

tb) l H 2 0 ) n  A N D  IH20), 

0 OURS 

13 

1 1  

9- 
0 . 0  0 . 5  1 . o  

i / n  1 / n  

Figure 1. ( a )  The first ionization energy against l / n  for H(CH,),,H and (CH,), or (C,H4)=. 
( b )  The first ionization energy against 1/n for (H,O),, and (H20),; the open circles denote 
predicted values, the open squares observed values, and the crosses represent ab initio 
calculations. 

method [25] which is employed here. As in the ab initio calculation this method also 
showed an increasing deviation of ionization energy from observation as size n increases. 

Although not sufficient, small correlation effects are introduced in the semi-empirical 
treatment above, judging from comparison between its predicted band gap of 6.5 eV 
and ab initio HF value of 7.3 eV [7] for alternant-bond trans-polyacetylene (C,H,), (or 
simply (CH),). Its predicted valence band structure is shown in figure 2(a). We find that 
the difference between the observed [38, 391 and predicted ionization energies for the 
linear chain crystal of alternant-bond trans-polyacetylene is2.9 eV. In general the effects 
of correlation raise the occupied valence band and lower the conduction band [40]. Only 
for a qualitative estimation of correlation correction for band gaps, the occupied JG 
valence band energy for polyacetylene is raised by 2.9 eV, and the n* conduction band 
energy lowered by the same amount. Subtracting the combined correlation energy 
correction of 5.8 eV from the predicted band gap of 6.5 eV, we obtain the band gap of 
0.7 eV. Interestingly, this value becomes reasonably close to the predicted band gap of 
0.8 eV from the first principles LCAO, extended tight binding EH calculation of Grant 
and Batra 191 and the observed band gap of 1.4 eV [38]. Encouragingly, similar correction 
made for polyethylene leads to the band gap of 9.7 eV, again yielding better agreement 
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10 I81 A L T E R N A N T  IC2H21v. l o  [ b i  N O N - A L I E R N A N T  l C ~ H 2 1  

0 1 2 3 0 1 2 3 
k k 

Figure 2. (a) Valence band structure of alternant-trans-polyacetylene (CH),or (C2H2)=. ( b )  
Valence band structure of non-alternant-trans-polyacetylene (CH), or (C2H&. 

with the observed band gap of 7.5 k 0.5 eV [6] compared with the uncorrected band gap 
of 14.5 eV [15]. Thus it is possible to introduce such correlation correction for improved 
estimations of band gaps by using only the experimental values of the first ionization 
energies of large clusters and the predicted band gaps of crystals. For the sake of 
completeness, in figure 2(b) we report the valence band structure of regular (non- 
alternant-bond) trans-polyacetylene, which belongs to screw rotation symmetry [ l l ]  . 
The predicted band gap is 0 eV in agreement with the symmetry condition and its band 
structure is predicted to be similar to that of the alternant-bond trans-polyacetylene 
crystal shown in figure 2(a). Geometry optimization yielded the equilibrium C-C bond 
length of 1.39 8,for the non-alternant-bond trans-polyacetylene. For the alternant-bond 
crystal, the double bond (C=C) length of 1.34 8, and the single bond (C-C) length of 
1.44 8, were predicted. Encouragingly this is in excellent agreement with measurements 
[38,39]. We find the lower end (near k = 0) of t h e n  band to be of a-type, in agreement 
with the CNDO/SZ calculation of Duke and co-workers and with the measurement of 
ultraviolet photoemission spectra [4]. Then*  conduction band state is found to be bound 
in agreement with the extended tight-binding EH study of Grant and Batra [9]. However, 
both the semi-empirical and ab initio methods predict larger band gaps than observed. 
This failure comes from the insufficiency of introducing correlation correction in the 
conventional one-parameter set semi-empirical effective Hamiltonian treatment and 
the entire neglect of correlation in the ab initio HF. 

As pointed out above, the predicted ionization energies for the organic ‘clusters’ of 
n-alkanes were seen to diverge as size n increases, indicating insufficient accounting of 
correlation effects by the effective Hamiltonian treatment, which introduces only a 
single parameter set. For this reason it will be of great interest to examine how a 
generalized semi-empirical effective Hamiltonian treatment discussed in section 2 
corrects such failure. Now we examine the molecular clusters of (H20)n and infinite 
linear chain ‘ice’ (H20),, by using the generalized effective Hamiltonian. Previously it 
was shown that the one-parameter set effective Hamiltonian treatment described above 
completely failed even for the hydrogen-bonded molecular clusters of (H20)n  in both 
binding energy and geometric structure [29, 351. We avoid descriptions of molecular 
cluster calculations and of parameterization procedure as they appear elsewhere [29, 
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351. In our calculations the geometric structures of clusters (H20),  are taken from 
various portions of the hexagonal ice I [43]. As shown in figure l (b ) ,  the first ionization 
energy decreases with cluster size n. Interestingly we find that there exists the propensity 
of near linearity between predicted ionization energy and the inverse of cluster size, l /n.  
Convergence close to the observed work function (-11.0 eV) [44] of bulk ice is well 
predicted. It should be pointed out that the convergence from a finite to a bulk value 
can be extremely slow for certain physical properties [45]. This is a significant improve- 
ment over the one-parameter set semi-empirical treatment made for studying the mol- 
ecular clusters and crystals. In figure 3 we show the band structure of infinite linear chain 
ice, (H20), with the unit cell made of dimers (H20)2 .  The predicted band gap is -16 eV 
and the optimized geometry of O-H---0 bond length, 2.86 A. Predictedvalence band 
widths are found to be narrow for both occupied and unoccupied bands as expected for 
the hydrogen-bonded ID ice crystal. It will be of great interest to see how well the band 
gap of one-dimensional ice correlates with the future calculation of three-dimensional 
ice crystals, using the present level of approximate effective Hamiltonian method. 

It should be noted that there are other proposed effective Hamiltonian techniques 
[46-48] currently available for the systems of current interest and that the difficulty of 
long-range interactions has been fully described and actual efforts for improvement have 
been made by some researchers in this field [49-531. 

3. Summary 

In this study we examined both the finite systems of clusters and infinite systems of one- 
dimensional organic crystals and ice by introducing the conventional semi-empirical 
method and a generalized semi-empirical effective Hamiltonian treatment. Using the 
conventional semi-empirical method [25] which employs only a single intramolecular 
parameter set, we found divergence in ionization energy for n-alkanes from observation 
as cluster size n increased, and the failure of band gaps for infinite linear chain organic 
crystals. On the other hand, the generalized effective Hamiltonian method was shown 
to correct such failure for the molecular clusters of (H20)n .  In view of the failure of 
accurate ionization energies and band gaps for the organic systems with the conventional 
semi-empirical methods, work will be resumed on further improvement by introducing 
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a new semi-empirical Hamiltonian approach in the same spirit as the satisfactory two- 
parameter set semi-empirical method that we devised for the study of molecular clusters 
in the current work. 

In short, some findings from the present studies are (1) the improvement of the first 
ionization energies for the molecular clusters of all sizes with the generalized semi- 
empirical effective Hamiltonian treatment, (2) the satisfactory prediction of a linearity 
between the first ionization energies and the inverse of cluster size, l /n ,  in agreement 
with observation, and (3) the feasibility of qualitative correlation correction for band 
gaps in comparison with observation. In this study we have found some salient features 
with the conventional semi-empirical treatment, namely the satisfactory predictions of 
equilibrium geometries for clusters and crystals and a linear relationship between the 
ionization energies of clusters and the inverse of cluster size, l /n .  This is consistent with 
the work of Cao and co-workers [54]. 

Acknowledgment 

One of us (SHSS) greatly acknowledges the partial support of the Korean Ministry of 
Education and the Pohang Institute of Science and Technology for the current work. 

References 

[ l ]  Del R e  G ,  Ladik J and Biczo G 1967 Phys. Reu. 155 997 
[2] Andre J M ,  Gouverneur L and Leroy G 1967 Int. J .  Quant. Chem. 1427; 451 
[3] Euwema R N ,  Wilhite D L and Suratt G T 1973 Phys. Rev. B 7 818 
[4] Euwema R N ,  Wepfer G G,  Suratt G T and Wilhite D L 1974 Phys. Reu. B 9 5249 
[SI Andre J M and Leroy G 1971 Int. J .  Quant. Chem. 5 557 
[6] Delhalle J ,  Andre J M, Delhalle S ,  Pireaux J J ,  Caudano R a n d  Verbist J J 1974 J .  Chem. Phys. 60 595 

[7] Andre J M ,  Delhalle J ,  Fripiat J G,  Hennico G and Piela L 1988 Int. J. Quant. Chem. 22 665 
[8] Kertesz M, Koller J and Azman A 1980 Lecture Notes in Physics 113 

Andre J M, Lambert-Berard M E and Lamotte C 1976 Bull. Soc. Chim. Belges 85 845 

Recent Advances in the Quantum Theory of Polymers eds J M Andre et a1 (Berlin: Springer) pp 56-79; 
Kertesz M, Koller J and Azman A 1977 J .  Chem. Phys. 5 1180 

[9] McCubbin W L and Manne R 1968 Chem. Phys. Lett. 2 230 
[lo] Morokuma K 1970 Chem. Phys. Lett. 6 186 
[ l l ]  O’Shea S F and Santry D P 1974 Chern. Phys. Lett. 25 164 
[12] Fujita H and Imamura A 1970 J .  Chem. Phys. 53 4555 
[13] Beveridge D L,  Jan0 I and Ladik J 1972 J. Chem. Phys. 56 4744 
[14] Dewar M J S, Suck Salk S H and Weiner P K 1974 Chem. Phys. Lett. 29 220 
[IS] Dewar M J S ,  Yamaguchi Y and Suck Salk S H 1977 Chem. Phys. Lett. 50 259; 51 175; 1979 Chem. Phys. 

[16] Young V ,  Suck Salk S H and Hellmuth E W 1979 J .  Appl .  Phys. 50 6088 
43 145 

The band gap in this paper was not accurately computed although the band structure is generally in good 
agreement with present calculations. 

[17] Harris F E and Monkhorst H J 1970 Phys. Rev. B 2 4400 
Harris F E ,  Kumar L a n d  Monkhorst H J 1973 Phys. Reu. B 7 2850 
Kumar L,  Monkhorst H J and Harris F E  1974 Phys. Reu. B 9 4084 

Fry J L ,  Brener N E and Bruyere R K 1977 Phys. Reu. B 16 5225 
[18] Brener N E and Fry J L 1978 Phys. Reu. B 17 506 

[19] Johnson K M ,  Herman F and Kjellander R 1974 Electronic Structure of Polymers and Molecular Crystals 

[20] Kasowski R V, Caruthers E D and Hsu W Y 1980 Phys. Reu. Lett. 44 676 
[21] Kunz A B 1972 Phys. Reu. B 6 606 

(New York: Plenum) 



Electronic structures of molecular clusters and crystals 10001 

[22] Parr R G 1972 Quantum Theory of Molecular Electronic Structure (Reading, MA: Benjamin) 
[23] Pople J A and Beveridge D L 1970 Approximate Molecular Orbital Theory (New York: McGraw-Hill) 
[24] Dewar M J S 1969 The Molecular Orbital Theory of Organic Chemistry (New York: McGraw-Hill) 
[25] Dewar M J S and Thiel W 1977 J .  Am. Chem. Soc. 99 4899; 4907 
[26] White C T and Elert M L 1984 Bull. A P S  29 273 
[27] Boudreaux D S ,  Chance R R,  Elsenbaumer R L, Frommer J E , Bredas P, de la Paix N and Silbey R 1984 

1281 Elert M L and White C T 1983 Phys. Reu. B 28 7387 
[29] Suck Salk S H and Lutrus C K 1987 J .  Chem. Phys. 87 636 
[30] Deleo G G ,  Milsted C S and Kralik J C 1985 Phys. Reu. B 31 3588 

Deleo G G and Fowler W B 1985 Phys. Reu. B 31 6861; 1986 Phys. Reu. Lett. 56 402 
[31] Deleo G G ,  Fowler W B and Watkins G D 1984 Phys. Reu. B 29 3193 

Watkins G D,  Deleo G G and Fowler W B 1983 Physica b, c 116 28 
[32] Abbate G,  Barone V. Lelj F. Iaconis E and Russo N 1985 Surf. Sci. 152 690 

Barone V, Lelj F, Russo N and Abbate C 1984 Solid State Commun. 49 9529 
(331 Verwoero W S 1981 Surf. Sci. 103 153; 103 404; 103 338 
[34] Singh R K, Sahu S N ,  Singh V A and Corbett J W 1985 Phys. Lett. A 112 175 
[35] Suck Salk S H ,  Chen T S ,  Hagen D E and Lutrus C K 1986 Theor. Chim. Acta 70 3 
[36] Lowdin P - 0  1962 J .  Math. Phys. 3 969; 1171; 1968 Int. J .  Quant. Chem. 2 867 
[37] Turner D W. Baker C ,  Baker A D and Bundle C R 1970 Molecular Photoelectron Spectroscopy (London: 

[38] Chang C K, Heeger A J and MacDiarmid A G 1979 Ber. Bunsenges. Phys. Chem. 83 407 and references 

[39] Salaneck W R,  Thomas H R ,  Duke C B, Paton A,  Plummer E W, Heeger A J and MacDiarmid A G 1979 

Bull. A P S  29 316 

Wiley Interscience) 

therein 

J .  Chem. Phys. 71 2044 
Tani T, Grant P M, Gill W D. Street G B and Clarke T C 1980 Solid State Commun. 33 499 

[40] Collins T E 1975 Electronic Structure of Polymers and Molecular Crystals eds J-M Andre and J Ladik 

[41] Duke C B, Paton A ,  Salaneck W R,Thomas H R ,  Plummer E W, Heeger A J and MacDiarmid A G 1978 

[42] Yip K L, Lipari N 0, Duke C B, Hudson B S and Diamond J 1976 J .  Chem. Phys. 64 4020 
[43] Tomoda S and Kimura K 1983 Chem. Phys. Lett. 102 560 
[44] Yencha A J ,  Kubota H ,  Fukuyama T,  Kondow T and Kuchitsu K 1981 J .  Electron Spectrosc. b 23 431 
(451 Delhalle J and Calais J-L 1987 Int. J .  Quant. Chem. Symp. 21 115 

[46] Barthelat J C and Durand Ph 1978 Gazz.  Chim. Ital. 108 225 
[47] Nicolas G and Durand Ph 1979J. Chem. Phys. 70 2020 
[48] Andre J M, Burke L A,  Delhalle J ,  Nicolas G and Durand Ph 1979 Int. J .  Quant. Chem. 13 283 
[49] Delhalle J ,  Andre J M, Demanet C and Bredas J L 1978 Chem. Phys. Lett. 54 
[50] Andre J M, Fripiat J G ,  Demanet C ,  Bredas J L and Delhalle J 1978 Int. J .  Quantum Chem. S 12 233 
[51] Bredas J L, Andre J M and Delhalle J 1980 Chem. Phys. 45 1U9 

[52] Delhalle J ,  Piela L, Bredas J L and Andre J M 1980 Phys. Reu. 22 6254 
[53] Pisani C ,  Dovesi Rand  Roetti C 1988 Hartree-Fock A b  Initio Treatment of Crystalline Systems (Berlin: 

[54] Cao Y ,  Guo D, Pang M and Quian R 1987 Synrh. Met. 18 189 

(New York: Plenum) pp 405-452 

Chem. Phys. Lett. 59 146 

Calais J-L and Delhalle J 1989 J .  Mol. Struct. 188 213 

Piela L, Andre J M, Bredas J L and Delhalle J 1980 Int. J .  Quantum Chem. S 14 405 

Springer) 


